
PHYSICAL REVIEW A VOLUME 24, NUMBER 5 NOVEMBER 1981

Amplified-spontaneous-emission intensity fluctuations
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Intensity fluctuation characteristics of amplified-spontaneous emission are found using

intensity rate equations and the noise-amplifier approximation for saturation coupling

between two and four competing modes. The existence of more than one mode leads to
the retention of relatively large fluctuations in each mode even as the amplifier gain is sa-

turated, an operating regime which by contrast has been shown to reduce significantly the

fluctuations when only a single beam is present. The noise-amplifier approximation is

found to be an adequate approximation of the effects of the spontaneous emission distri-

buted along the length of a laser amplifier. The intensity fluctuations in all cases ap-

proach limiting distribution functions as the amplifier becomes heavily saturated.

Characteristics of these limiting distributions are found for one, two, and four beams; for

combinations of beams copropagating and counterpropagating; in the presence and ab-

sence of loss; for differences in gain; and for saturation of the sources due to high intensi-

ties.

I. INTRODUCTION

Early theories of amplified-spontaneous emission
(ASE} considered only the growth of the average
intensity or variation of the spectral density with
increasing amplifier length, or variations within an
amplifier of fixed length. ' For unsaturated sys-
tems, each mode could be considered independent-
ly. In even the simplest theories, however, gain sa-
turation couples the independent spectral, spatial,
or polarization modes of the system through their
interaction with a common atomic population.

Recognizing this, more recent theories of ASE
intensity growth and spectral-width variation have
given close attention to models which assume the
existence of signals propagating in both directions
in one-dimensional amplifying media. Interest-
ingly enough, however, .one can see that the results
published for these bidirectional theories are not
noticeably different from the single-mode results. '
In our examination of multimode-rate-equation
solutions, we will demonstrate why they so closely
agree with the single-mode results.

In addition to bidirectionality, there is the added
dimension of two polarization modes propagating
in each direction. In some systems such as
discharge-excited gas-laser amplifiers, the excited

atoms are randomly polarized and thus the two

polarization states of the field couple equally

strongly to the atoms and can have equal influence

on the gain saturation by depletion of the number

of excited atoms. In other systems, such as in

transversely (optically} pumped dye-laser systems&

the molecules are polarized and the coupling
between the two optical polarizations is significant-

ly reduced. Some studies of the variations due to
different coupling strengths, resulting from detun-

ing of competing modes in lasers, have been report-

ed. ' As ASE generally involves broadband-

optical signals, no such investigation is envisioned

for the present work.
While recognizing the many complications

which one might introduce in studies of ASE, we

will limit the scope of the present work to homo-

geneously broadened systems. Since, in this case,
the full broadband-optical signal interacts with
each atom and the signal (after gain narrowing)
fluctuates slowly with respect to the polarization
dephasing time, the growth of the total intensity

may be considered to be governed by an intensity
rate equation. Limitations of this assumption
have been discussed in detail by Hopf. "Ultimate-

ly, the model is limited by the onset of "cross-
spectral coupling efFects" first discussed by Gamo'
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and later identified more thoroughly in the theoret-
ical work of Hopf" and that of Menegozzi and
Lamb. ' When the intensities become sufficiently
strong, relative to the saturation intensity, the finite
bandwidth of the signal comes into play. The so-
ealled randon-phase approximation no longer
describes the atomic response to the separate
optical-frequency components and the rate-
equation methods are no longer valid.

Systematic studies, either experimentally or
theoretically, of intensity fluctuations of ASE
sources have only recently been made. Hopf's"
single-mode theory predicted that saturation would
quickly reduce the initial thermal fluctuations of
the spontaneous emission. For example, the nor-
malized variance of the fluctuations is shown to go
to zero at long amplifier lengths, assuming contin-
ued validity of the intensity rate equation for very
high intensities.

Experimental studies of the intensity fluctuations
of cw ASE have been reported for the 3.51-pm line
of xenon in helium-xenon gas discharges and the
3.39-pm line of neon in helium-neon gas
discharges. ' ' Intensity fluctuation studies of
pulsed ASE systems have considered radiation at
540-nm in neon' and 694-nm in ruby. ' Cosmic
maser action (presumably ASE) has been observed
at microwave frequencies for CO and OH.

For these systems the approximations of homo-
geneous broadening and intensity rate equations
offer only a modestly acceptable approximation.
For example, in helium-neon the reported
minimum spectral width of 17 MHz compares to a
pressure-broadened homogeneous linewidth of 146
MHz, while in helium-xenon the reported
minimum spectral width of 30 MHz compares to a
pressure-broadened homogeneous linewidth of 85
MHz. Allen and. Peters have discussed the evi-
dence for at least fivefold narrowing in the mainly
homogeneously broadened cosmic-maser lines.

The truly approximate nature of the assumptions
of this paper in their application to ASK systems is
evident. The results apply much more rigorously
to multimode-laser systems where the individual
modes have very narrow linewidths. (See Refs. 9,
10, and 22). However, the experimental results, as
discussed below, show remarkable qualitative con-
sistency with our theoretical results suggesting suf-
ficient roubustness of the theory to justify the
drawing of physical insight from our model.

Studies of the characteristics of cosmic masers
have left a particular puzzle. The sources are
known to have extreme brightness, with evidence

of spectral narrowing. Despite the expectation of
heavy gain saturation neither spectral rebroadening
nor departures from non-Gaussian statistics have
been observed. ' ' These results have been attri-
buted to the interaction of many modes, ' '9 '23

and the intensity-rate-equation model developed
here demonstrates how readily such interactions
limit the efFect of gain saturation on the intensity
fluctuations of a single mode.

Early measurements by Gamo, '4' using cas-
caded amplifier chains separated by Faraday rota-
tion isolators to achieve quasiunidircctional sys-
tems, displayed a leveling out of the normalized
variance at a nonzero, through reduced, value.
The nonzero limiting value did not agree with the
single-mode (intensity-rate-equation) predictions,
nor could it readily be explained in terms of cross
spectral efFects, although saturation was clearly evi-
dent.

We have recently reported a theory of intensity
fluctuations in bidirectional ASE sources which
showed that the coupling between two oppositely
propagating beams would produce a nonzero limit-
ing value for the normalized variance of each
beam. Even more recently, our experimental
measurements on xenon-helium systems similar to
Gamo's but using only a single variable-length
discharge have demonstrated the leveling out of
the normalized variance as the length is increased
beyond that necessary to cause saturation of the
gain. ' ' We have also clearly demonstrated that
this leveling out of the normalized variance is
correlated with the onset of anticorrelations in the
fluctuations of beams of different linear polariza-
tions propagating in the same direction. The
general agreement of these experimental results and
the early theories of coupled intensity-rate equa-
tions leads us to the more complete theoretical
treatment presented in this paper.

II. GENERAL APPROACH

We describe the variation along the amplifier of
several coupled modes by r'ate equations of the
form

dx~ g~xI

1++g'„„x„
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where e&
——1 for signals propagating in the +z

direction and ez ———1 for counterpropagating sig-
nals, g& is the small signal gain for the pth mode,

x& is the normalized intensity, a& is a linear-loss
coefficient due to diffraction or scattering, g&xp&
represents the distributed spontaneous-emission
source, and g&„and g&„are coupling constants in-

dicating the relative strength of the saturation de-

pletion of the gain and spontaneous emission,
respectively, for the pth mode due to the vth inten-

sity. The incremental gain

constants g„„=l. Additionally, while most interest

will be concentrated on the case when all modes

have the same gain g&
——g„=g, we will indicate the

nature of the solutions when the gain constants are
not equal. Since, also quite generally, experimental

systems have relatively high gain and little loss, we

will take a& ——0 for our most detailed studies.
When a&~, the most interesting alteration of the
results is a change in the asymptotic form of the
fluctuations which will be displayed.

III. MEAN-INTENSITY GROWTH

is ProPortional to the PoPulation inversion (Nz-

N~), while the spontaneous emission

~ —1

Xq„g~xpq
——1+g gq~„ (2.3)

depends on the upper-state population N2, alone.
Thus, in general, the saturation of 6& and Xp& will
difFer leading to g&„Q g&„.

We will first analyze these equations in the ap-
proximation that they describe the evolution of the
mean intensity, gaining insight into the implica-
tions of different values for the key parameters.
The deviations of this mean-intensity rate-equation
approach from the more exact approach of averag-

ing the result over the intensity fluctuations has

previously been shown to be small.

To calculate the intensity fluctuations, we will

use the so-called "noise-amplifier" approximation
which has been used previously. "' ' ' Instead of
distributed spontaneous emission, the source is tak-

en to be a statistically varying input signal. The
intensity rate equations are treated as stochastic
differential equations and the output fluctuations
are determined by averaging over the input fluctua-

tions. The "noise-input" signals are taken to have

the negative-exponential intensity-probability-
distribution functions characteristic of linearly am-

plified spontaneous-emission noise.
Our general goal is to describe differences among

single-mode (polarized) signals in single-beam, bi-

directional, and two-polarization bidirectional sys-

tems. Even more modes can easily be treated by
our theoretical approach, but we assume that the
two-polarization bidirectional case may be the most
physically meaningful in describing the typical ex-

perimental conditions in a long cylindrical homo-

geneously broadened amplifer.
For calculational simplicity, we will make the

assumption that all modes have the same coupling

A. Saturated source
(four-level laser)

In systems where Ni ——0, the gain and spontane-

ous emission will have the same saturation

behavior (g„'„=g„„).For a single mode, the equa-

tion

g(x +xp}
dz 1+x

(3.1)

has solution for x (L} (the ASK output of an am-

plifier of length L) given by the implicit function

(1—xp}ln +1 +x(L)=gL .x (L)
xp

(3.2)

Considering two modes having the same gain

and propagating in the same direction, we observe

that in calculations involving only mean intensities,

x ~(z}=x2(z), so that the equations

dx ' g (x1,2+xp)
dz 1+x,+x2 (3.3)

reduce to the form

dxi g (x &+xp)

dz 1+2x i

which has clear solution

(3.4)

xi(L)
(1—2xp)ln +1 +2x)(L)=gL .

xp

(3.5)

The effect of coupling two modes in this fashion is

the same functional form of intensity-output depen-

dence on amplifier length as in the single-mode

case with twice the effective saturation parameter
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(to which the intensities were previously normal-

ized). In this case, it is also true that the beam

varies along the length of the amplifier, as if the
saturation parameter were doubled at each point.

The case of two counterpropagating modes as
governed by the equation

dx + -(x +xp}
=+g

dz 1+x++x— (3.6)

has been considered by Casperson and is readily
shown to have solution

(1—2x, )ln +1 +2x+(L) =gL .x+(L)
xp

(3.7)

dx)(L) g[x)(L)+xp]
dz 1+2x ~ (L)

(3.8}

while in the counterpropagating case,

This is quite a remarkable result. The output in-
tensity of one of two counterpropagating beams is
identical to the output of one of two copropagating
signals in amplifiers having the same length and
the same unsaturated spontaneous emission along
the amplifier. The output in the bidirectional case
is again the same as the output for a single mode
with twice the saturation parameter; however, in
this case it does not grow along the amplifier
length as if the saturation intensity were doubled at
each point. Thus, the intensities in the two cases
vary differently along the length of the amplifier
when saturation is important. The copropagating
beams have source values of gxp at z =0 while the
counterpropagating beams have source values of
gxp[1+x+(L)] ' at their respective starting ends.

Correspondingly, the slopes of the curves x (z}
evaluated at z =L, differ. In the copropagating
case,

8 Unsaturated souring

(three-level laser)

The functional equivalence of the copropagating
and counterpropagating cases considered in Sec.
III A above is model dependent as evidenced by
consideration of an alternative rate equation ap-
propriate when (Nq-N~) &&Nq..

'1++x (3.11)

For a single mode, the solution is given by

be essentially the same.
The solution for one of four similar modes cou-

pled in this fashion (which, in particular, includes

the case of two beams propagating in each direc-
tion) is readily shown to be

x i+(L)
(1—4xp)ln +1 +4x &+(L)=gL . (3.1P)

xp

Again this result is functionally equivalent to the
earlier results, requiring only modification of a sin-

gle parameter to make the results indistinguishable.

Thus, measurements of intensities will be relatively
insensitive in providing guidance in the selection

of, or verification of, multibeam models. Such
selection could occur only if th'e saturation parame-
ter were determined by an independent measure-

ment, perhaps by the determination of single-
mode-gain characteristics from studies of amplifi-
cation of an external source. With this value in
hand, one might then use the ASE intensity data
to determine the number of beams present, and the
strength of the interaction.

dx+(L) g [x+(L}+xp]
dz I+2x~(L}

(3.9)
(1—xp)ln +1 +x(L) =g(1+xp)Lx (L)

xp

where from Eqs. (3.5) and (3.7), we see that
x+(L)=xi(L).

The fact that the output intensity for the bidirec-
tional and unidirectional cases differ only by a fac-
tor of 2 in the values of the saturation parameter,
explains the essential agreement of earlier spectral
line-shape studies in the two cases. ' The general
result was that variation of the spectral line shapes
with amplifier length was demonstrably insensitive
to even an order-of-magnitude variation in the sa-
turation parameter. Thus the saturation-induced
rebroadening in one- and two-beam theories should

(3.12)

The difference between this unsaturated-source
model and the previously considered saturated-
source model is small. Equation (3.12) is just Eq.
(3.2) with a change of parameters g to g(1+xp).
Since the spontaneous-emission source is much less
than the saturation intensity in most systems, this
correction is insignificant and the two models are
practically indistinguishable in their results.

Considering two copropagating modes, it is
readily apparent for the same reasons as in Sec.
III A that the result is
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(1—2xp)ln + 1 +2xi(L) =g(1+xp)Lx(L)

(3.13)

The case of two counterpropagating modes has
been solved previously and is given by the equa-
tion

2»0+ [2»0+1+(2»0+1)'~ ]x+(L) 2»+(L)
(1+2»0) 2(»0+»0(2»0+1)[ —,[x+(L)] +x+(L) ( )' 1+&o (3.14)

Neglecting terms of order xp compared to 1, we can compare these two results more easily as follows: two
copropagating beams

xi(L)
ln +1 +2»~(1)=gL,

Xp
(3.15)

two counterpropagating beams

ln
x+(L) +1

Xp

x+(L)+xo

x+(L}+xo+—,[x+(L)]
+2x+(L)=gL . (3.16)

The results for x (L}are the same for both
x (L}» 1 and x (L) && 1, and in these limits agree
exactly with the results for two beams treated in
the model considered in Sec.IA. There are no-
ticeable deviations in the vicinity of the onset of sa-
turation [x (L)= 1] but these can be shown to nev-
er exceed 4%%uo. Thus, although the exact equiva-
lence is broken, the strong similarity and essential
equivalence between the copropagating and coun-
terpropagating models will prevent a qualitative
distinction being made in evaluating experimental
data.

An important general result is that the output of
a single mode for a long-length amplifier depends
on the magnitude of the spontaneous emission
which acts as an input source for an amplifier
without noise. We are thus reasonably justified in
considering the noise-amplifier approximation in
our later studies.

dx~

X~g~ dZ

dXv

X~g~ dZ
(4.2)

Thus, there exist constants along the amplifier

d„„=[x„(z)] "[x„(z)] (4.3)

will solve the general case of coupled-copropa-
gating and counterpropagating signals by observ-
ing the particular relations that permit us to write
the equation for x„ in terms of the sources x .,
thereby completing the uncoupling of the equa-
tions. Here, x„denotes the input signal in the vth
mode, which is used in place of distributed. spon-
taneous emission.

A. Relations among two

copropagating beams

Taking e&——1, we have the following relation
when e„=1:

IV. OUTPUT INTENSITY FOR THE
GENERAL LOSSLESS NOISE

AMPLIFIER

For the lossless noise amplifier, Eq. (2.1) be-

comes

dxp gpgxp,

dz " 1++»„ (4.1)

These constants represent the physical fact that the
number of gain lengths for the two beams always
differ by a factor equal to the ratio of the small
signal gain constants

z

x (z) x„;exp f G„dz

x~exp 6 z

Following Gray and Casperson who solved the
particular case of two copropagating signals, we

2"
exp f G„dz (4.4)



AMPLIFIED SPONTANSOUS-EMISSION INTENSmr. . .

The constants may be evaluated at the common in-

put position of the two signals (z =0) yielding

(4.5}

Combining Eqs. (4.3) and (4.5), we can then substi-
tute for x„(z) in Eq. (4.1) in terms of x&(z) and the
input signals xz,- and x ..

and since the output end for the IMth beam is the

input for the y beams.

C. General solution completed

Using the d„„and d„r, Eq. (4.1) may be rewrit-

ten

B. Relations between x„and
counterpropagating beams x q

In this case, e&
——1 and e&

———1, and

dxp"= 1+gx, -'=
X~g~ dZ

(4.6)

T

dx~ 8v 8v 814
=g~x~ 1+x~+ g (d~~} x~

dZ ~p
e =1v

' —1

+ pgxp

e~———1

Rearranging this equation yields

(4.9)

so that there again exist constants along the am-

phfier given by
g~dz = 1+x~+ g (d~~) x~

d„r [x„——(z)) "[xr(z)] (4.7)

which can be evaluated at the output of the pth
beam giving

d„gx„ (4.10)

(4.8)

where x„, is the output of the pth beam [x„(L)],
which can be integrated along the full length of the
amplifier with the result

X~ —8v 8v&8„

6 =1 e&———1

(4.11)

Substituting for the d's, from Eqs. (4.5) and (4.8},we find

g„l.=ln X~
Xpg

+(x~—xp, }+g x~
~]M, gV

'
8„~8'

PO gp xg 1—

e&———1

which may be simplified to the form

g~L, =in ~ +g "x„.
gv

8v~8
Po

(4.12)

This final form explicitly displays thc fact that the distinction among thc copropagating and counterpro-

pagating beams was not necessary. In the lossless amplifier they contribute exactly the same influence on
the evolution of one particular beam. Thc implicit function in Eq. (4.13) may now be solved when the initial

conditions x are specified for all v.

V. CALCULATION OF FLUCTUATIONS

Assuming that our coupled intensity rate equa-
tions describe a stochastic process, we may deter-

I

mine the fluctuations in the output of a single
beam by averaging the result over the distributions
describing the fluctuations of the statistically in-
dependent input signals. For example, the mo-
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ments of the output-intensity-probability-
distribution functions are given by

f (x~)"P(x~)dx„,

=f [x~(L, [x . ])]"Q[P„(x )dx„.] . (5.1)

mean intensities, and

C~w = ( (x~xwo &

—( &( &)[((~ )'&((~ )'&] '",
{5.6}

We will calculate below the fluctuation charac-
teristics of limiting cases (long, heavily saturated
amplifiers} and the general length dependence for a
variety of values of the parameters. While this
method is generally applicable to arbitrarily chosen
input-fluctuation characteristics, for ASK the fluc-
tuations will be assumed to have negative-

exponential intensity-probabilty-distribution func-
tions characteristic of spontaneous-emission noise:

P„(x„)=(x„.& 'exp( —x„(x„;& '} . (5.2)

where the integrations in Eq. {5.1) cannot be done
in closed form, we can perform the integration by
Gauss-LaguerrP quadratures. A modified binary
search is used to find the value of the implicit
function for each set of input values. We use the
Cartesian direct-product formula to accomplish the
multivariate Gauss-Laguerre integration

f f F(y,z)e i'e dydz=+F(x;, y;)ui;~, ,
l,j

where the roots (x;) and weights (w;) are tabulated
for various values of M. &9 For our final calcula-
tions, M was chosen large enough to give 1% or
better accuracy as determined by extrapolation
from results for smaller values of M. This approxi-
mate accuracy was confirmed by comparison with

the analytic formulas for the asymptotic values
when available.

Specific characterization of the fluctuations of
the output signals will include the normalized cu-
mulants K„ofthe distributions of a single-beam
and cross-correlation coefficients describing corre-
lations in the fluctuations of two beams. For refer-

ence, the normalized cumulants for a negative ex-
ponential distribution have values K„=(n —1)!for
n & 2, while K„=O for a constant intensity distri-
bution. Commonly used formulas include the nor-
malized variance

Ki =((x~ &
—(x~ &i)((x~ &

')

and cross-correlation coefficients

C„„=((x~x &
—(x„,& (x & )((x~ & (x & )

(5.4)

(5.5)

which measures the correlations in terms of the

which measures the correlations as a fraction of the
mean fluctuations of the two signals.

VI. LIMITING RESULTS FOR LONG
AMPLIFIER LENGTHS (HEAVILY

SATURATED AMPLIFIERS)

A. Lossless amplifiers

For very long lengths, the intensities will be
much larger than the input-source terms, so Eq.
(4.13) simplifies with the result

g„~s„
g~ x~

xvi
gv

(6.1)

which has a particularly simple explicit form when

all of the g„'s are equal to g:

x~=gL 1+(x„;) 'g x„. (6.2)

(6.3)

where there are N terms in the sum. The solutions
of Eq. (5.1},using Eq. (6.2) for x~, are just solu-

tions to a two-beam problem with one source of
the form Eq. (6.3) and the other of the form Eq.
(5.2). The integrations can be completed in closed
form with the results shown in Table I.

When there are two beams with different gain
coefficients, Eq. (6.1) becomes

xio
L =x1o+ x2

g2 x li

(6.4)

Results are shown in Table II. These can be com-

In this case the calculations are simplified still
further when all of the x have the same mean in-

tensity (x; &, as

P g x—:P(I}
.v&c

N —2
= (x; &

'"+",exp [—I(x; & '],
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TABLE I. Limiting characteristics of the intensity fluctuations (equal gain) (NC—not calculated).

Kg K3 K4 Ks ' Ks K7 C
I

Ci

Unsaturated source

NC NC NC
1 1

N+1 N —1

N —1

1V+1
NC

—2/15
—2/15

1/3
1/3

0
0

0.25 0 —1/3
0.25 0 —1/3

1/3 0 —2/15
0.28 —0.096 —0.1

0.25 o —1/3
0.18 0.09 —0.67 —0.17

gL/2
gL/1. 4

—1
—0.62

—1/3
—1/3

3/5
3/5

1.4 —1/5
1.4 —1/5

0.015 —0.83—1.7
0.015 —0.83 —1.7

0.43
0.43

gL/4 3/5 0.43
gL /2. 6 0.56 —0.014

0.015 —0.83 —1.7
—0.34 —0.76 0.57

1.4 —1/5 —1/3
5.1 —0.21 —0.37

—0.089 —0.16

N beams without loss (copropagating gL/N
or counterpropagating)

Two beams

Copropagating
with loss, gL/2
without loss gL/2

Counterpropa gating
without loss,
with loss

Four beams

Copropagating
without loss, gL/4
with loss gL/4

Two in each direction
without loss,
with loss

(countercorrelations)

Saturated source

Two beams

Copropagating
with loss
without loss

Counterpropagating
without loss,
with loss

unchanged from unsaturated two-beam results
unchanged from unsaturated two-beam results

unchanged from unsaturated two-beam results
gL /2 0.56 0 —0.51 0 2.0 0 —0.57

TABLE II. Long-length limiting characteristics of the intensity fluctuations in a lossless two-beam amplifier (un-
equal gain) (NC—not calculated).

Normalized cumulants of the distribution of x&, Correlations
g&

'

gz

(x,.)
g)L

Kg Kg Kg Kt; K7 Cia
I

C

0.2
0.5
0.9
0.99
1

1.01
1.1
2
5

1X10-'
7.2X10-'
0.23
0.47
0.5
0.532
0.777
0.9999
1

1.136
2.065
1.006
0.376
0.33
0.29
0.083
0
0

2.934
12.38
1.333
0.0304
0

—0.021
—0.032

0
0

12.66
121.8

0.98
—0.167

2/15
—0.1

6.7X10-'
0
0

78.5
1.6X 10~

NC
NC

0
3.5X10-'
7.3X 10
0
0

6.4X 10'
2.5X 10

NC
NC

0.25
0.16

—0.012
0
0

6.4X 10'
4.9X 10'

NC
NC

0
—0.13

5.9X 10-'
0
0

NC
—1.45 X 10-'
—0.289
—0.332
—1/3
—0.332
—0.289
—0.2X 10

NC

NC
—0.998
—1

—1

—1
—1

—1

—0.998
NC
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pared to recent studies of gain variations in a mul-

timode laser.
22

Note specifically that for one beam E2 ——0 and
the C's are undefined. This is the result alluded to
earlier that saturation reduces the fluctuations
when only a single beam is present until no fluc-
tuations remain. The output is a constant intensi-

ty.
The general results show, in agreement with ear-

lier results, that the presence of more than two
beams leads to a sustaining of the variance of the
fluctuations at a value closer to that characteristic
of thermal light. We have shown previously that
the two-beam case has a limiting intensity-
probability-distribution function which is constant
from zero to gL.

Initial negative exponential fluctuations are re-
tained in the limit as N~00, as has been suggested
as an explanation for the thermal fluctuations ob-

23,20
served in heavily saturated cosmic masers.

The close agreement with the theories of coupled
modes in a laser ' is not surprising. However, it
indicates that the use of electric-field-amplitude
Langevin rate equations provides little additional
insight into the characteristics of the intensity fluc-
tuations. The intensity rate equations are sufficient
since in either case the coupling occurs because of
saturation effects involving the addition of the in-
tensities rather than the field amplitudes.

B. Amplifiers with loss

X
X1p=

1 +X2l /X1l

in the copropagating case, and by

(6.5)

(K —X1l ), X il )X2l.

X1p = ' X1l
(K —x2( ), x2( )x )(

X2l

(6.6)

in the counterpropagating case. For four beams,
the result for all four propagating in the same
direction is

1x„=E 1+ (x2;+x3;+x4;)
X il

(6.7)

while when there are two beams traveling in each
direction the result is

If one keeps the loss in the intensity rate equa-
tions then the limiting output is independent of the
amplifier length. The maximum possible output of
any beam is x„,=a& '(g& a„)—=X„. Assuming
that the gain and loss are the same for all of the
interacting beams, we can find the limiting results
for copropagating and counterpropagating cases.

For two beams the limiting intensities are given

by

[E—(x ); +x2; )]
X1p =

—1

2l + +l+ + ~ X2i +X1l )X2l +X1l'
X1l (6.8)

I

+ + + ——1 + +x&([K —(x ]( +x2( )](x2( +x )( ) $ x2/ +x ); &x2; +x );

The general result with loss quickly becomes ap-
parent. If the beams are propagating together, the
intensity fluctuations not only approach a limiting
characteristic distribution governed by E, but the
intensity also ceases to grow with increasing am-
plifier length. The characteristic fluctuations are
the same as in the lossless amplifier case.

Differences clearly exist in the counterpropagat-
ing case. This result was observed earlier for two
beams. 2s The form in Eq. (6.7) can be easily gen-
eralized for any number of beams traveling in each
direction. Comparisons between the loss and loss-
less amplifiers in the two- and four-beam cases are
shown in Table I. The differences in the correla-
tion between copropagating and counterpropagat-
ing beams in the four-beam case are also displayed.

Clearly loss tends to slightly reduce the coupling
between the counterpropagating signals. We
showed in the earlier work that there are two dis-

tinct processes at work. The simple gain satura-
tion reduces the fluctuations to the lossless case.
When the loss term becomes important there is a
second reduction of the fluctuations due to the loss
decoupling. The separation of these two effects
depends on the magnitude of E.

C. Saturating source

A measure of the effects of saturating the source
term can be achieved by replacing x - by

x 1+gxq(zq)
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FIG. 1. Normalized cumulants versus gain lengths

for a one-beam (no-loss) amplifier with input intensity
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FIG. 3. Normalized cumulants versus gain lengths
for four equal input beams (10 ) in a no-loss amplifier.

That is, saturating the source by the sum of the in-

tensities of all the beams evaluated at the end of
the amplifier at which that source is applied. The
results for two beams in a lossless amplifier are
shown as an example in Table I. The effect of the
source saturation is to heighten the competition
between the beams leading to larger normalized
variances in the fluctuations, and leading to greater
overall fluctuations.
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FIG. 2. Normalized cumulants versus gain lengths

for two equal input (10 ) beams in a no-loss amplifier.

VII. RESULTS FOR VARIATION
OF AMPLIFIER LENGTH '

As an example of the length dependence of these
results the case of the lossless amplifier has been

solved for equal gain, equal source input, and one,

two, and four beams. The results for various sta-

tistical quantities are shown in Figs. 1 —3. Devia-

tions from the initial thermal values occur as the
combined intensities reach saturation levels (of or-

der unity).

VIII. CONCLUSIONS

These results indicate that the fluctuations of a
single beam in a laser amplifier depend most signi-
ficantly on the number of competing modes
present. These effects will have to be taken into
account in evaluating laser-amplifier performance,
as not only will the spontaneous-emission noise be
an additive contribution to the field of an amplified
input signal, but the intensity-saturation coupling
will cause additional noise.
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