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Introduction. Any extensive R&D program re-
quires numerous decisions as the program evolves.
In our atomic-vapor laser isotope-separation
(t‘.\VI.IS) program, decisions span issues associated
with process selection, systems design, opsrating
and funding schedules, and the setting of perfor-
ance goals and milestones. Usuaily we must
choose among several processes and systems, but we
“ould like to maintain alternatives until we are
&ssured success in each required category. For ex-
#mple, we are considering a number of alternative
Pump-laser systerns for the AVLIS process. If
'_cs?urces of money, manpower, and time were un-
"Mited we would develop all available alternatives.
construction of the full-scale laser isotope-
s:paration (LIS) plant would be based on the best

alternatives available at the time of design freeze. In
practice we must allocate limited resources
(typically money) among z few competing alter-
natives. Thus as the program progresses we must
eliminate alternatives as soon as it becomes clear
that their contribution to the expected final payoif
no longer justifies the resources they consume.

We have developed two computer codes for use
as decision tools that systematize the timing of deci-
sion points, the setting of funding levels, and the
dropping of alternative technologics. These codes
aid the decision maker in formulating strategies that
are consistent both with his preferences regarding
outcomes and with his subjective judgments con-
cerning the preobabilitiss of unknown factoers or
future events.

The simpler model, the static nonlinear
programming (NLP) code, makes the assumption
that there is only one decision point, at which time
we optimally allocate a fixed total budget among
the various alternative technologies in each LIS
program. We maximize the overall probability of
success, defined as the successful completion of at
least one of the LIS projects, using the numerical-
optimization techniques of nonlinear programming,.
Our second code, the dynamic-resource allocation
code SAGE {Sequential Aliccation GEnerator), is
more complex and makes use of the methods of
statistical decision theory. In SAGE we allow for up
to five decision points at which we reallocate
budgets and where we may drop alternate
technologies or LIS programs to maximize the ex-
pected (average) payoff.

Such tools of decision analysis do not actually
make decisions. Only someone cognizant of ail
quantifiable and qualitative factors in the project,
and who is also maintaining the perspective of the
project context, can make wise decisions. Rather,
such tools provide a language and framework for
clarifying issues, focusing discussion, and develop-
ing intuition regarding sensitivities to important

- parameters. Using these tools we can examine the

consequences of various assumptions, scenarios,
and possible alternaie strategies. ‘
One-Time Allocation Problem. Our NLP code
makes the simplification that there is only one deci-
sion point, at which time we optimaily distribute a
fixed total budget among alternative competing
laser drivers {D) and uranium-handling (U)
technologies to maximize the probability of even-
tually achieving scientific, engineering, "and
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economic success for a LIS process. Figure 3-16 jI-
lusirates an example of such a situation, Our code
can also optimally allocate a total DOE/LIS budget
among a number of competing LIS programs. As
presently implemented, each of three LIS programs
has four drivers and four uranium-handling
technologies. Thus the allocation of a fixed overall
DOE budget for LIS constitutes a 24-dimensional
optimization problem constrained by the prior ex-
penditures for each technology in each program,

Both of our decision codes use a two-parameter
functional relationship for the dependence of the
probability of eventual success of the ith technology
[e.g., copper-vapor laser (CVL), rare-gas halide
(RGH), and frequency-doubled neodymium YAG
(FDNY) laser technologies] on the total dollars
spent (D;) on R&D for that technology,

P, = Po;|1 - exp -(@#> : (23)
1

In this expression SAT, is the level of funding that
would begin to saturate the development of the ith
technology. The other parameter Pg, is the
probability of achieving success if we had all the
money we reasonably needed for development of
the particular technology.

The various laser and uranium-handling
technologies we investigated comprise a series/
parallel circuit where the set of all laser technologies
is in series with all uranium-handling technologies
(both are necessary). However, CVL, RGH, and
FDNY laser technologies are in parallel with each
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Fig. 3-16. LIS program structure.

other (success in any one is sufficient). Th§ logic.of
this type.of circuit, shown in Fig. 3-16, also applics
to each.of the competing LIS programs. Ad-
ditionally we assume that the three LIS programs
are in a parallel development mode. In other words
success in any one of the programs would constitute
success (although with varying levels of benefit) of
the overall LIS program.

Using the functional form of Eq. (23) for the
dependence on funding of the probability of suc-
cessful development of each technology, we can
write the expression for the dependence of the
overall probability of success P on the funding of
each alternate technology D; Describing the
funding allocation as a vector, we express our
problem as:

maximize P (D)
subject to the constraints
(@) D;>0and(b) D, = budget.

The NLP code performs this optimization using a
modified Fletcher-Reeves conjugate-gradient
technique using penaity functions.® The code output
gives the budgetary allocation to each of the alter-
native technologies, along with the probability of
success for each program. We can thus exercise the
model using the latest estimates of the input
parameters and the expenditures to date and find
the relative proportion of the next year’s funding
that should be spent on R&D in each technology
area. This also identifies those technologies (given
the finite remaining budget) that should not be
funded any further.

We have exercised the NLP code using
preliminary data representing rough estimates of
Pg; and SAT; for sets of technologies in each of the
three competing LIS programs separately. The
results provide an initial estimate of the optimal
resource allocation in each LIS program, subject to
a given program budget. We also found a corre-
sponding optimal probability of success for each
project and for the LIS program as a whole. Using
the same input data, but allowing the NLP code to

allocate the total budget among the three programs,

we found a significant improvement. Sensitivity
studies varying the total budget provide the optimal
number and identity of technologies in a program
(and the optimal number of programs) at each level
of funding. As we reduce the funding the code




‘begins to allocate zero resources to alternates that
previously had been funded.

Dynamic Resource-Allocation Methodology.
The methodology we have developed for the
sequential allocation of R&D dollars is an applica-
tion and extension of the techniques of statistical
decision theory. Certain concepts, problem struc-
ture, and calculations occur in any statistical
decision-theory application.® Certain other problem
elements are peculiar to the LIS R&D application
where a number of alternate programs or
technologies are developed in parallel. To aid in the
exposition of possibly unfamiliar decision-theory
principles, we will begin with a brief description of a
simplified problem, which we analyze within the
framework of statistical decision theory.

Statistical-Decision-Theory Example. Our ex-
ample consists of the R&D of two pump lasers,
faser 1 (L1) and laser 2 (L2), e.g., any two of
FDNY, CVL, or RGH. Although we require only
one pump-laser system for our development of an
AVLIS process, we are not 100% certain at the out-
set that either laser system can be adequately

~developed for our needs. Therefore we hedge our
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bets by developing in parallel two laser systems,
with the expectation that we have significantly in-
creased our chances of success with at least one of
the alternates. After a period of parallel develop-
ment we must decide (presumably based on the out-
come of the development effort) which laser to drop
from consideration, and which to develop to
(hopefully) eventual success. For simplicity we
assume that the outcome of the initial development
stage (in addition to an enhanced state of develop-
ment of each technology) is either a positive or
negative indication for each of the laser types (e.g.,
L1 looks good, L2 looks bad, etc.).

We can depict the sequence of development
‘results and decisions in a decision tree as shown in
Fig. 3-17. Two types of nodes occur on the decision
tree: probability (P) nodes and decision (D) nodes.
These alternate along any path. Probability nodes
represent the outcome of some chance event (in this
example the result of development). We have no
control over which branch to the right is taken, but
we do have certain probabilistic knowledge
regarding the likelihood of each alternative. At deci-
sion nodes we do have complete contrel over which

L1 OK
(0.278) L2 No good

Allocate
D‘l . Dz

L1 No good
(0.218) L20K

L1 No good
(0.202) 1.2 No good -

Develop L1 p y (0.93) 1
083 0.93 \ F _(0.07)0
Develop L2 S
) P, (0.69) 1
( 7 0.69 \_ F (031)0
Develop L1 P 7 > (0.93) 1
093 0.93 \ F (0070
Develop L2 S
\‘/ // P, {(05) 1
77 o5\ F (0510
Develop L1 P, S_ (086)1
086 / 0.86 \ L (0140
Develop L2 s |
| 5 P/ — (0.69) 1
77 0.69 \— L (031)0
Develop L1 P/ > (0.86)1
0.83 0.86 = F {0.14) 0
‘ Dev;lgp L2 P, > (05) 1
77 o5\ F (050

{Outcome)

Fig. 3-17.  Decision tree for L1 and L2 laser development.
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path to take. In fact, it is assumed that we have
some decision algorithm with which we make this
choice. Our algorithm, of course, is a function of the
particular path we have traversed tc reach each D-
node. The final P-node in our decision tree leads to
either success or failure of the particular
technology, with its associated benefit or penalty. In
this example we have chosen all benefits equal to
one and all penalties equal to zero. Since we will be
maximizing the expected payoff, this choice corres-
ponds to maximizing the probability of success.
Note that even for this simple problem, with only
one development phase and one decision to be

made, the tree already has 29 branches representing -

all possible alternative sequences of decisions and
outcomes.

The procedure for analyzing a problem using
statistical decision theory consisis of the following
four steps.6 : '

1. Set up the decision tree from left to right,
defining the probability and decision nodes, hence
specifying the logic of the program activities and the
decision sequence.

2. Assign the payoffs at the terminal nodes,
thus determining the figure of merit to be op-
timized.

3. Calculate the probabilities at the chance
forks (P-nodes) from left to right. This consists of a
Bayesian analysis,5 for each possible branch, of the
probabilities of success of each laser system that up-
dates these probabilities to reflect each of the possi-
ble results of the preceding development stage. We
also calculate the (predictive) probability that each
of these branches will in fact be realized. These
predictive probabilities appear in parentheses in
Fig. 3-17.

4. Average out and fold back. Working from
right to left we calculate the average payoff at each
probability node as it is encountered. At each deci-
sion node we select the branch that leads to the P-

node with the greatest expected payoff. We'

associate this value of expected payoff with the D-
node. This branch then represents the decision
- made, e.g., drop laser L2. This constitutes the op-
timal use of our limited control at each decision
point. Continuing from right to left we construct the
complete set of optimal decisions.

This analysis yields the expected” payoff written
at the left-most node. Note that in our example this
is the same as the probability of success. In Fig. 3-17
the numbers written in parentheses on each branch

emanating from a P-node are the probabilities that
the respective path will be traversed. The other
number written at each node is the expected payoff
corresponding to that position on the tree. We have
crossed out the unfavored options from each D-
node. :

Behind our analysis of this decision tree lie
calculations that require specification of a “like-
lihood function” representing the reliability of
R&D information. An example of this function is
the conditional probability P, (predict L1 OKILl
will be successful), which we use in the Bayesian
probability analysis. For our example we have ar-
bitrarily chosen this probability as 0.6 for both
technologies. Later we will need to specify a model
that determines this probability as a function of the
level of R&D funding for each technology. Clearly,
more dollars spent should yield more reliable R&D
information. Other inputs required for this simple

- example include the a priori probabilities of success

for each laser technology, here chosen to be 0.9 for
L1 and 0.6 for L2. The right-most parentheses in
Fig. 3-17 enclose the ‘corresponding posterior
(relative to the development stage) probability for
each laser system. v
Our analysis in Fig. 3-17 shows that whatever

- the outcome of the remaining development prior to

a final decision, we will eventually terminate
development of laser L2. This conclusion is a conse-
quence of the relative weakness of our reliability-of-
research factor 0.6 (0.5 corresponds to no usable in-
formation). We conclude that L2 should be dropped
immediately, since its continuation adds nothing to -
the probability of success (0.9). The other choice is
to provide enough additional funds during the
current development stage so that the reliability-of-
research factor becomes great enough to influence
the final decision. This would definitely increase the
probability of success.

Specific Model Assumptions. The statisticai-
decision-theory model just described treats only
single decisions, i.e., which laser program to drop.
The size of the tree increases almost exponentially
with the number of decisions required. We also wish
to decide how much money should be allocated to
each technology at each research stage. If we were
to represent the continuum of possible allocations,
even divided into fairly large increments by alter-
nate branches from the decision nodes, the problem
would quickly become intractable. To deal with this
problem we have derived a number of alternative




gudgei-allocation aigorithms. We use these
slzorithms to distribute at each D-node a fixed
budget for each R&D stage among the surviving
aternate programs or technologies. Depending on
the option selected the budget at each stage is
allocated proportional to:

e The initial allocations input for the first
R&D stage. :

Po, D;(prior)
— exp|l- ——— 1. 24
® ST, cxp[ SAT, @

® The gradient of the probability of overall
success with respect to the dollars allocated.

® The gradient of the expected payoff with
respect to the dollars allocated. :
The third and fourth options locally maximize the
increase in probability of eventual success and ex-
pected payoff, respectively, as they are influenced
by the dollars allocated. We can also include ad-
ditional allocation algorithms.

The money spent on R&D gives rise to two
separate types of gain. One type has more of the
“rescarch™ character. Analogous to a market survey
or statistical sampling, it garners more precise infor-
mation to aid in better forecasts and decision mak-
ing. The other type of gain has more of the
“development™ character, in which the program or
technology is brought to a more mature and com-
plete level of development. This would include con-
- Struction of required facilities, attainment of
milestones, defining a preferred process, and selec-
tion of operational options and procedures, etc.

Our methodology reflects the research gain by
“.Sing the likelihood function. We apply this func-
Uon in the Bayesian analysis for the calculation of
both posterior probabilities of success and the
lfmbabilitics of various research outcomes. The
Bkelihood function, which describes the reliability
R of the information derived from R&D during
tach stage, is a function of the dollar allocation to
®ach technology during that stage. For each
lf":h"0|£>gy if one expected a positive or negative in-
dication with a probability of 0.5 (irrespective of
“hether success is in fact eventually achieved), then

rly that would constitute no information, i.e..

P, ( Positive

Indication| success

Evcntual) =05 (25)

Hence this should be the value of the likelihood
function when no money is allocated to a
technology, i.e., the result is no new information.
The equation we have used to represent the depen-
dence on dollar allocation is:

exp (-8D, /SAT,)

R(D) = I - 5

(26)

We choose the parameter 8 (generally greater than
or equal to 1) to rescale the saturation dollars.
Large values of 8 correspond to very efficient
research, i.e., research that generates reliable predic-
tions.

We now briefly discuss the manner in which we
treat the development aspect of R&D. Note that the
a priori probabilities of success (and their subse-
quent Bayesian updates depending on results of
prior R&D) are based on anticipated total expen-
ditures. These have the same functional form as in
the nonlinear programming model. Programmatic
decisions at the D-nodes (dropping programs and
budget reallocation) may result in greater (lesser)
total expenditures and a consequent greater (lesser)
chance of eventual success. Hence we update the

. probabilities of success for each program or

technology both at each P-node (because of the
current indications of the most recent research

stage) and at each D-node (following the latest’

reallocation of funds).

Finally we specify the logical sequence of ac-
tivities and decisions that we wish to analyze. In
starting our analysis after an arbitrary amount of
funds have already been expended, we begin with
the next research stage and an initial allocation for
three programs or technologies being developed in
parallel. (Below we extend this analysis to the case
in which there are up to four programs or
technologies with an immediate decision at hand to
drop one.)

Figure 3-18 shows the sequence of probability
and decision nodes representing the results of

- research and reallocations of budgets, respectively.

Note that only on every other D-node is one
program or technology dropped. This is because no
matter how negative the latest research results, a
program or technology is generally phased down
gradually, rather than abruptly terminated. This
allows for the possibility that it may later be ramped
up as a result of significant innovations during the
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Fig. 3-18. Decision tree for three programs or technologies.

“*back-burner”stage, along with possibly diminished
expectations for the alternate programs. We in-
dicate below each node the multiplicity of
branching. This decision tree, if fully drawn, would
have over 23,000 branches.

Description of SAGE Code. We implemented
the methodology described above in a computer
code SAGE for the CRAY computer. The code
handles as many as three (four) programs or aiter-
nate technologies if the first branch point is a
probability node (decision node at which one
program or technology is dropped).

If the case being run requires the first node to
be a decision node, at which one of the four
programs is dropped, the code provides the option
of some operator interaction. This is because the
selection of the program or technology to be
dropped first may correspond to an actual program
decision at hand. The code provides the decision
maker with the implications of each of the four op-
tions corresponding to dropping each of the four
programs or technoiogies. In addition, although the
SAGE code makes decisions based on maximizing
expected payoff, other considerations and figures of
merit may be of interest. The code first presents the
decision maker with the expected payoff, standard
deviation of payoff, and probability of success for
each of the four options. For a number of reasons
he may choose to drop technology P4, even though
dropping technology P3 leads to a slightly higher
expected payoff. The decision to drop technology
P4 may lead to a substantially lower standard devia-
tion of payoff or it may result in a higher
probability of success (as is true in our example).
Either of these decisions could be preferable to an
' insignificant increase in expected benefit. Political
considerations could also easily outweigh a small
advantage in expected payoff. By knowing the con-
sequences of each of the aiternatives, he is frec to in-
corporate any qualitative considerations he feels are

important.

After the decision maker chooses a decision op-
tion (in our example, dropping P3) the code prints
out corresponding full numerical output data at the
terminal and creates the graphical output file. The
terminal output includes the expected value (7.86
arbitrary units) and standard deviation of the
payoff as well as the probability of success that had
been printed previously. In addition the output
shows two useful measures of our R&D sequence,
i.e.,, the expected value of perfect information
(EVPI) and the expected value of sample informa-
tion (EVSI). Lastly the output indicates that if a
final decision were forced now, technology Pl
would be selected, yielding an expected payoff of
only 7.5911, even though all RD&D money is
assumed allocated to PI.

In the case referred to here EVSI is positive.
However, it is possible for it to become less than
zero, and in fact this has occurred in some example
cases we have run. A negative EVSI indicates that
the R&D effort directed towards three parallel
programs or technologies has less value than im-
mediately reducing the program to one candidate.
Such a result indicates that a selection decision was
overdue. The value of EVPI printed out is a
measure of the benefit one might realize from more

- precise forecasts of success and failure.

The detailed probability data printed at the ter-
minal relate both to the probabilities of success and
failure and to the statistics regardirig the various
decisions made at the decision nodes. The
probability of survival and success for each
program or alternate technology is equal to the
product of the conditional probability of success
given survival to the final stage times the probability
of survival to the final stage (in our example, stage
4). From changes in the probability of survival to
cach stage we calculate the probability that each
program or technology is dropped at each stage
These probabilities all appear in the output. The
code computes these probabilities from the
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decision-tree data by summing the path prbba-
bilities corresponding to the appropriate event, such
as survival of a specific technology to stage n.

The graphical output consists of the following
for the selected option: '

® Bar charts of the probability of being
dropped for each program or technology at each
stage.

© Bar chart of the probability of success for
each program or technology given that it survives to
the final stage, with the a priori probability of
success presented for comparison.

® Bar chart of the probability of surviving to
the final stage.

® The cumulative distribution of payoff,

Decision analysis

1.00 (a)

- 0.75 —

0.50 —

Probability

0.25 —

1

Pl P4 P2

Decision analysis

7.86 [— (c)

0

P1 P4 P2

® A bar chart displaying the contribution of
each program or technology to the expected payoff.
® A histogram showing the distribution of
expenditures for each program.
When the first node is a decision node the output
also contains a bar chart showing the expected
payoff and the probability of success for each op-
tion (corresponding to dropping each of the four
programs at the first decision node). Figure 3-19
shows examples of these graphics.
~ We observe from Fig. 3-19 (a) and (c) that in
this example alternate technology P2 contributes
nothing to the optimal expected payoff of 7.86 (ar-
bitrary) units. Figure 3-19 (d) confirms this by
showing that only when one drops P4 or PI is the
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Fig. 3.19. SAGE graphical output. (a) Probability of success given survival; (b) expenditure distribution for
L; (¢) contribution to expected payoff; (d) dropped program.
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Fig. 3-20. Sensitivity studies, timing of decisions.

expected payoff significantly reduced. We should
therefore consider dropping P2 and P3 immediately.
Putting all the R&D funding into a development
program comprising P1 and P4 only will result in an

expected payoff greater than the 7.86 we obtained
here since no funds are wasted on an option thyt
had virtually no chance of final selection. By trying
different combinations of program alternatives and
parameter values we have gained numerous other
insights that both confirm and extend our intuition
regarding various possible tradeoffs. In particular,
sensitivity studies with respect to magnitudes of the
budget for each stage, keeping a fixed mission
budget as in Fig. 3-20, can indicate near-optimal
points in time at which to drop redundant alter-
natives.

We are now generating the data base for
further validation and sensitivity studies. We will
use the codes in the direct manner described above
to derive the consequences of our assumptions
regarding programmatic parameters and to deter-
mine optimal decision sequences and times. We wil|
also use the codes to quantify the implications for

programmatic variables of any postulated decision
sequence and assumed probability of success. By us-

ing the code in this inverted mode we can help
evaluate any proposed program-decision logic.

References

5. D.G. Luenberger, Introduction to Linear and Nonlinear
Programming (Addison-Wesley Publishing Co., Inc.,
Reading, MA, 1973).

‘6. H. Raiffa, Decision Analysis—Introductory Lectures on

Choices Under Uncertainty (Addison-Wesley Publishing Co.,
Inc., Reading, MA, 1968).






