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Statistics of the Stokes parameters for gaussian distributed fields
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We present a statistical characterization of the Stokes parameters S; (through their first-order cumulants and probability density
functions) for a set of partially polarized, quasi-monochromatic plane waves which is gaussian distributed. The coherency matrix
formalism along with the geometric interpretation of the Stokes parameters provide guidance for these analytical calculations.
Among many results, it is found that, except for totally unpolarized light, the probability density functions of S; (j=1, 2, 3) are

not generally symmetric around their means.

1. Introduction

Recently, Barakat [1] considered the time-statis-
tical properties of the Stokes parameters for a par-
tially polarized quasi-monochromatic light field. This
exercise is important because the Stokes parameters
are the observables of the plane wave field at optical
frequencies. The set of these four real parameters,
(S;> (j=0-3), describes the second-order polari-
zation properties of the field. A well-known geo-
metric representation of these quantities is given by
the so-called Poincaré sphere [2] (see also ref. [3],
related topics have been discussed in ref. [4]) 22 of
radius P in three-dimensional space with axes (S;)>/
(8>, j=1, 2, 3. This is the set of the states of po-
larization P where the degree of polarization is given.
Moreover, it has also been pointed out that a useful
interpretation of the {.S;) is in terms of intensity dif-
ferences for certain orthogonal polarization states
(i.e., of opposite handedness and with major axes of
their vibration ellipses which are orthogonal).

Among the implications of these insights, two are
important to emphasize. Unpolarized light is the
unique totally symmetric state localized at the center
of 22. On the other hand, polarization means sym-
metry breaking since P can also be viewed as the an-
alogue of an order parameter [5]. For example, to
right circularly polarize means to displace the state

of polarization (described by a point in the Poincaré
sphere X2) towards the positive axis of {(S3) /{So)>.

The first-order moments of S; can be evaluated
when the probability density function (PDF) of the
transverse electric field (assumed here to be a dis-
tribution of fluctuating two-dimensional analytic
signals) is known. In this respect, the results ob-
tained by Barakat were based on the utilization of a
PDF form which refers to the one given by Good-
man [6] (denoted below as the gaussian—~Goodman-
type field ). These results are appealing since one can
make several comments:

(1) it is suggested that when using this type of PDF,
{S3> =0 independently of the degree of polarization;

(i1) gaussian states would lie in the equatorial cir-
cle X! of the Poincaré sphere.

Among the implications of (i) and (ii), one can
state the following argument: a right-circularly po-
larized beam of light cannot be gaussian distributed,
or conversely, a gaussian distributed light field (such
as blackbody thermal radiation) cannot be right cir-
cularly polarized. Clearly, this fact is in contradic-
tion with experiments (e.g., refs. [2-4]) which leads
us to believe that the origin of the difficulty lies in
the definition of the gaussian-Goodman-type distri-
bution. As it seems to us that this assumption is too
restrictive for polarization optics applications, we feel
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it may be helpful to have a discussion of this prob-
lem in a more general context.

Our method will follow Barakat’s work [1], but
our derivation differs from ref. [1] not only in that
it extends the results to a wider class of gaussian field
distribution which is of most interest in optics, but
also in that it is computationally more straightfor-
ward. This paper is divided into two main sections.
First, we summarize in section 2 our notation and
some ingredients used later.. Second, we present a
complete derivation of the cumulants of the Stokes
parameters and PDFs in section 3, with complete
calculations given in the appendices.

2. Notation

Following the usual statistical theory of partially
polarized light [2-6] (specialized to a collection of
quasimonochromatic plane waves), we adopt the
analytical signal representation of the transverse
electric field components, i.e. E;(R, t)=E,(R, t)+
iH(E;(R, t)), where j=1, 2 labels two mutually or-
thogonal directions in the plane perpendicular to the
wave vector. Here R denotes the space coordinates
and H( ) is the Hilbert transform. This represen-
tation is most useful because it allows us to define a
one-to-one correspondence between field compo-
nents and Stokes parameters. In the quasi-mono-
chromatic description (narrow spectral range com-
pared to w) and at a fixed point, one has E;(¢) =
a;,(t) exp[i(wt+¢;(t)]. Introducing the random
character of E;(¢), we assume that E;(¢) [and con-
sequently H(E;(¢))] is a zero-mean stationary,
gaussian random process. We have in mind the de-
scription of light such as thermal blackbody radia-
tion [2-4,7,8]. Then, the joint bivariate (real and
imaginary parts) complex PDF with zero mean is
given in standard notation [7] by

2

P(E,, By = ) exp(—% » E:‘A,-,E,> NGY
(27m) 5i=1

where the hermitian and positive definite 2 X2 ma-

trix has the dimension of the inverse of an intensity.

Physically, this matrix is simply related to the coh-

erency matrix @, whose elements are

Py=(EE)=2(47");. (2)
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To make contact with the @ formalism [2-5] we
point out here some useful properties. Let us denote
by @, (P,) the notation for a coherency matrix when
P=0 (P=1); then we recall the following properties:

D,=3(So>00, DP=P,tr(D;), (3)
P=D,+D,. (4)

Egs. (3) have been physically interpreted in ref. [5].
Relation (4) originates from the isotropy of 22 (i.e.
convexity of polarization states). The Stokes param-
eters {.5;) are obtained from &, with

(5 =tr(Pg;) , ' (5)

where o; is the usual notation for the Pauli matrices,
0, being the identity matrix. We also recall the de-
composition theorem for @,

3
P=3 3, (S0 (6)

In the linear basis with horizontal (1) and vertical
(2) axes the instantaneous Stokes parameters are
defined by

So=1E,I’+|E;|?,
Si=E|’~|E2|?,
S,=EtE,+E E}%,
Sy=i(E1E, —E,E%) . (7)

Note that (S;) =0 requires that @,, be real, hence
that @ be a real matrix. The key point that we shall
use in the remainder of this paper is to recognize that
S, and S5 can be derived from S, with a change of
coordinates. This point was already noted in ref. [1],
but not used in the computations of the different
moments of S;. Physically, it makes sense since it
comes from the isotropy of the Poincaré sphere.
These transformations are

S —’Rz S, with R A ( : 1)
1 2 2= \/7 B
2\-1 1

S S, with R ‘(1 i) (8)
1— 83 =7 ]

1 -1

Observe that transformations from one pair of basis
states to another are unitary 2X2 matrices; physi-
cally they are in correspondence with the rotations
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in Poincaré space. The operation on the coherency
matrix is simply a similarly transformation ®—
R,®R;!, which leaves its eigenvalues invariant.

3. Statistics of the Stokes parameters

From our discussion in section 2, we see that we
need characterize only two random processes, S, and
S). We want to calculate the three first cumulants
2(S)) of S 11 =<8}, xo=var(S;), and x;, which give
information about the mean of .S, the spreading of
the PDF(S;) around its mean, and the asymmetry of
the PDF(S;) around its mean, respectively. Our
strategy lies in the computation of the characteristic
function of Sy and S, (detailed in appendix A ), which
permits us also to determine the PDF(S;) by an in-
verse Fourier transform (see appendix B). From the
cumulant generating function, egs. (A.4), (A.5), it
follows that

*s(So) =I'(s) tr(P°) , < (9)
%:(S1)=1'(s) tr((Pa,)*) , (10)

where I'(s) is the gamma function of the indicated
argument. Now evaluating these quantities for ar-
bitrary P, we obtain

x1(S0)=<So>, x(S)=<S8),
x2(So)=<So>*(1+P?)/2,
x2(81)=<So>*(1=P?) /248 )2,
%3(S0)=<So > (1+3P%)/2,
13(8)=<8> (S>> (1=P)+2<5;)%) . (11)

Egs. (11) tell us that the variance of S, (S;) de-
pends quadratically on the degree of polarization. The
asymmetry factor for S| vanishes only when ¢S; ) =0.
Notice that the results for S, are in agreement with
those of Mandel [8] and Saleh [7]. When P=1,
x3(S1)=2(S,>3, which is positive or negative de-
pending on the sign of (S,) [e.g., for £45° linearly
polarized states, one gets {.S|> =2 {(S,>, x(S;) =
{So> 2, x3(S1)=%2(S;>3]. Observe from appen-
dix B that p(S,) reduces to a negative exponential
distribution when P=1 and that the PDF(.S),) is not
symmetric around <S;) unless P=0.

Now for S, and S;, we have to make use of the
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similarity transformation on the coherency matrix,

1:(S)=I'(s) tr[ (R, PR 0,)°]
=I'(s) tr((Do,)*), fork=2,3, (12)

since R7'0,R, =0, and R3'0,R;=0;. It follows
that (for k=1, 2, 3)

X1(8S) =Sk s
22(SK)<So Y2 (1=P?)/2+ ( Sk )2,
1(SK) = {(Sk> GBS Y2 (1=P2)+2(S>?), (13)

which means that the S; have the same cumulant
form.

The statistics of Stokes parameters discussed above
has some remarkable properties. First, note that
%3(S;.0) #0 simultaneously for j=1, 2, 3 unless P=0.
This means that S; have generally nonsymmetric
PDFs around their mean. With regard to point (i)
of the introduction, we observe that we do not re-
quire that {.S;3)» =0, which implies that (thermal)
gaussian distributed fields are not restricted to 27} of
the Poincaré sphere. It seems very likely that the
Goodman type of multivariate complex gaussian
distribution (eq. (3.9) of his paper [6] ) has a rather
obscure significance in optics since it excludes the
case of circularly polarized light, which is of great
interest in many experimental situations. Note that
Steeger et al. [9-11] have examined other aspects of
this problem (i.e. spatial fluctuations of the Stokes
parameters with application to speckle fields), which
differ from the present temporal situation.

This exercise is not entirely academic. Steeger et
al. have also noted that the statistics of the Stokes
parameters is a topic which has a potentially wide
area of application to investigate the polarization
properties of scattering and radiation processes (e.g.,
characteristics of a random rough surface, propaga-
tion in monomode fiber optics, etc.).

It seems desirable that quantitative time-statistical
analyses of the Stokes parameters should be exper-
imentally performed since we are not able to locate
such measurements in the literature to date. It would
also be worth examining how these results are mod-
ified when one superposes a coherent light contri-
bution on a partially polarized thermal beam, or for
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more complex field distributions (e.g. K distribu-
tions [12]).

Appendix A

This appendix deals with the method of calcula-
tion for the cumulants of .S;. The line of reasoning is
similar to that of Saleh [7]. Consider the following
expression for the characteristic functions of S, and
S; [eas. (A.1) and (A.2), respectively]:

CSo()= Cexp o)y = 5% [ @b ak,

2
Xexp(— i 21 E*¥ (A, —Ziué,,-)E,-)

ij=

=det A [det(A4,;—2iud;)]~"

2
=det4 [] (a;—2iu)~*
Jj=1

=(1=2iu/a,)(1-2iu/a,) , (A.1)
CS; (u)=det A(a, —2iu)~'(a, +2iu)~!
=(1=2iu/a,)(1+2iu/a,) , (A.2)

where the a; denote the eigenvalues (supposed dis-

tinct) of 4 and J;; is the Kronecker symbol. If there

is any degeneracy (e.g., if P=0), the expressions have

to be modified by taking the limiting value when

a,—a,. The cumulants are the coefficients of u*/

I'(k+1) in a MacLaurin expansion of In C(—iu),
k

InCexp(uX)) = § Fes (X) (3)

where I'(n) is the gamma function. This yields

%(S0) =24I (k) tr (A=) ") =T'(k)tr ((P)*) ,
(A4)

1c(81) =2T' (k) tr((4~"0,)*) =I'(k) tr((Pa,)¥) .
(A5)

Appendix B
In this appendix we compute the PDF of S, and

S;. The general procedure is to observe that the PDF
can be obtained by writing the inverse Fourier trans-
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form of the characteristic function C(u). Hence, we
get

det A exp(—iuSy) du
2n (a, —2iu) (a, —2iu)

p(So) =

4 exp(—iuSy) du (B.1)
T 81 J (utia,/2)(ut+iax/2) '

Since Sp>0, the integral converges and is simply
evaluated by contour integration (i.e. residue the-
ory). It follows that

P(So)= —z(jz‘fzal)
X [exp(—a,80/2) (—exp(—a280/2) ],
u Uu
“= Sy (4P T Sy (1-P)°
a>a,>0. (B.2)
Hence

1 ' 28,
PS)=prsss [C"p(‘ <So>(1+P)>

PAY
LGty | L

This agrees with the results of Mandel [8] and Saleh
[7]. Observe that P(S,) depends only on the meas-
urable parameters {S;> and P. The same remark
holds for degeneracy in appendix A. For S, we obtain

det A exp(—iusS;) du
2n (a, —2iu) (a, +2iu)

p(S)=

a1 exp(—iuS;) du
T 8n J (u+tia/2)(u—iay/2) "

(B.4)

The integration in eq. (B.4) can be carried out in the
same way as for eq. (B.1). After an integration over
a contour for which the integral over the boundaries
is found to converge (note that we have to discrim-
inate between the cases .S; >0 and S, <0) we get the
following expressions: if S| <0 then

p(S)= 2% __exp(a,8,/2)

2(ay+ay)
2 Sy

= B.5

<So>(1—P2>e"p<<so>(1+P))’ (B.3)
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and if S,>0 then

a, a,

PO 2w ta)

exp(—a,5,/2)

I S (_S—)
= Soy (1=P) T\ T Sy (1-P) )

which can be put in the following form:

2
P8I = oS =P

|51 ]
<So>[1—sign(Sl)P])’ (B.6)

X exp( —

with sign(u#)=u/|u|. From the same method,
expressions can be obtained for p(S,) and p(S;) with
corresponding modifications [Jacobian transfor-
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mations of (A.1) resulting from egs. (8)].
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