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Intensity fluctuations in a two-mode ring laser
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Abstract. Intensity fluctuations in a two-mode ring laser with zero detuning
are derived using a noise amplification rate-equation model. Both approximate
and exact forms of the gain saturation are treated. Steady-state distributions of
the intensity are derived analytically permitting calculation of the mean and
normalized variance. Numerical solutions yield the time-dependent evolution of
these quantities from initial input noise. Recently derived mode competition
effects, such as a steady state value of  for the normalized variance (rather than
zero as in a conventional laser) and negative correlations between the intensity
fluctuations of the two modes, appear more simply here and their statistical origin
is explained.

1. Introduction

In a recent treatment [1] of a-two-mode ring laser a rather unusual result was a
normalized variance of 1 for the intensity fluctuations of either mode where there was
no detuning of the modes and equal gain for each mode. In this case, the two modes
were also shown to have maximum negative cross-correlation.

Considered here is a noise amplification approximation in which the distributed
spontaneous emission noise is replaced by thermal input noise [2, 3]. We solve the
rate equation for the intensities as a type of stochastic differential equation [4] in
which the probabilistic aspects are the initial values of the intensities. The advantage
of such a model is a simplification in the analysis. This approximation should
generally be applicable when the increase of the intensity of each mode primarily
results from gain rather than the distributed noise. The validity of our model is
indicated by comparison of our results with those of M-Tehrani and Mandel [1] who
used distributed noise in a Fokker—Planck formulation.

Rate equation approaches such as the one taken here neglect coherent interac-
tions between the modes and the atoms [5]. By investigating the behaviour of the
intensity rather than the amplitude we also neglect effects caused by the field phase
evolution.

Among other results, the fluctuation phenomena mentioned above are also found
in our model and are fully explained in terms of the steady-state distribution of the
intensity.
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2. Ring laser models
The evolution in time of the intensities of two counter-rotating modes in a ring
laser is given byt

dx1,2= 81,2%1,2 e ox 1)
dt 14, 482y 4 1,2%1, 2,

where g is the small signal gain; a, the linear loss coefficient; and &, the mode-
coupling parameter. The equations are written in terms of intensity normalized to
the saturation intensity (x=I/1). '

A common approximation for such a system near threshold is given by

de! 2

dt =[(g1,2—%1,2) —&1, 2(%1, 2+ Ex3 1)]xy 5 (2)

M-Tehrani and Mandel and others make a similar approximation in the ampli-
tude rate equation. Using a renormalized intensity, y =31gx, and a pump parameter,
a=1(g—a), yields the form

=2(al,2—y1,2—fy2,1)y1,2. (2a)

Langevin noise sources which represent spontaneous emission noise are also
included by M-Tehrani and Mandel [1] on the right hand sides of the amplitude rate
equations. In contrast to their work, we represent the early noise by stochastic initial
conditions on y, , (or x; ;) and assume that subsequent spontaneous emission is
negligible compared with the intensity. While this is not expected to be appropriate
in any analysis of the phase of the field, we note that our results for intensity
fluctuations should agree with theirs in the limit of large pump parameter (when
intensities are much larger than the distributed noise).

We will present analytic results for the steady-state solutions of these equations.
We will also explore in detail the temporal evolution of the intensity for the special
case when a; =a, and £=1. Numerical calculations of the intensity fluctuations of
the modes for this case will be presented and shown to agree with our steady-state
results and with those of M-Tehrani and Mandel [1] in the appropriate limits in £ and
a.

3. General steady-state results
. -When both modes reach steady state, from either equation (1) or (2 a), we have
relations of the form

_ Ay=x,+8x, and A,=x,+&x,, ' 3)
where 4 = (g —a)/a for equation (1) and A = a for equation (2 a). The soiutionI yields
x1,2=(A1,2—’g'A2,1)/(1—6?), : , 4
where
0<x; ,<A; 5 o

1 Similar intensity rate equations are used by Hopf [3] and Casperson [6].

{1 When £=1 the solution is degenerate requiring the analysis given in the following
section.
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Thus in general each beam reaches a constant intensity with no fluctuations, so the
normalized variance, Q, is zero. These results agree with those of M-Tehrani and
Mandel [1]. Retaining the noise sources one can use these results and standard
Langevin equation techniques with a quasi-linearization of the amplitude equations
to derive the cross correlation between the modes in this limit of large pump
parameter.

For the case 4, =A4, we see that the intensities again go to constant values
without fluctuations. However, if =1, 4, # A4,, one can see (from equation (2 a))
that the stronger mode reaches a steady state value with no fluctuations while the
weaker is damped. While our model cannot handle this weak signal it is obvious that
the weaker mode contains only the damped spontaneous noise and thus remains
thermal. These results also agree with those reported earlier.

4. Symmetrical case: both modes on line centre
From here on we analyse the case A;=A4,=A4, £=1 in detail. Writing using

dx2 dxl
\ar )T\ ar

either equation (1) or (2) it is seen that an invariant in time exists for any set of initial
conditions: x(#)/x,(t)=constant in time, and in particular: x,(2)=x,(t)(ny/n,),
where n; and 7, are the initial values of the two mode intensities. Physically, the
invariant results from the fact that the instantaneous gain is the same for both modes.

4.1. Steady-state
Using the invariant to replace x, in equation (3) we obtain

xy=A(1+ny/ny)"". (3)

From equation (3) the following form of the joint probability density function
immediately follows:

P(xy, x3)=0(xy +x5 — A)P(x;). (6)

Using equation (5), the distribution of the intensity fluctuations at equilibrium
can be determined from assumptions about the distributions of #; and n,. In
particular, if we take both to be negative exponential distributions characteristic of
spontaneous emission noise, we find the probability density function

-2
Pwo=f?[£—m<i_§>] . @)
Nty | Ny My Ny

Recall that 0 <x, < A. Letting y=1,/%,, the ratio of the initial mean values of the two
mode intensities, we can calculate the mean intensity, X,, and normalized variance,
Q,, of this steady-state distribution:

% =Aly Iny+1—y](1—y)~2 (8)

and

@ 2 [1—y+ylny]? ®

Q@V=<O—QD—V+%mﬂ>_L
X1
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Taking limits on y we find that

if y-o00, % —0 and Q;—0w0; (10a)

if y=1, x;=34 and Q=% (100)
and

if y—0, -4 and Q;—0. (10¢)

From equation (6) we can calculate the cross-correlation function,

X1%y —X1X;

Ce———m—-= -1, 11
\/[(AM) (Ax3)?] )
which is true for any value of y. .
When y=1, equation (7) yields
P(x)=A'. ' 12)

This is a uniform distribution for the intensity from x; =0 to its maximum value
x, = A. For such distributions the normalized variance is {. Using equation (6) and
the results for a uniform distribution, one also shows

BRmTAB_ 13
X1X2

The results in equations (10), (11), and (13) agree with those of M-Tehrani and
Mandel. We have shown that the values for y=1 are a consequence of a uniform
distribution for the intensity and have extended the derivations beyond the
approximate forms of the rate equations to the more exact forms. Thus this form of
mode competition should be observable in ring lasers well above threshold. In
addition, one now sees that when a; =a, and ¢ =1, equation (19) of M-Tehrani and
Mandel [1] agrees with our prediction of a uniform distribution for P(I,), since in the
limit of large pump parameters I; + I, ~a.

Our prediction that Q can become greater than unity indicates that the weaker E
mode exhibits strong pulsations. The imbalance in the inputs might be experiment-
ally investigated by injecting an external thermal signal into one mode of the ring
laser as it is turned on.

4.2. Temporal evolution
One can solve equation (2 a) explicitly with the result

1 -t |
y1=[1<1+”—2> +—-exp(—2at)(1—m>:| . (14)
a ny ny a

The mean intensity and normalized variance can be calculated as functions of
time given the deterministic relationship y,(ny, 73, 1). The evolution of the prob- .
ability density function is given by the formula

2]

P(yl)t)zj‘

. Jo 0(v1 —y1(ny, ny, 1)) Py(ny) Py(ny) dnydny, (15)
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Figure 1.
varied as shown. The results were calculated using

Laguerre summation.

Tt T — Tt
- a=30
1
10°F
Q,
10°F
10°
L i n i [ 1 2 " L 1 1 L 1 i 1 A 1
0 10 20 30
’ 2at
Figure 2. Normalized variance versus 2at.
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Mean intensity versus 2a¢. The initial value 72; was held fixed while y =7, /5, was
N =30 (i.e. 900 points) in the Gauss—
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Figure 3. Normalized variance vérsus mean intensity. The end point indicated on each
curve, marked by O, indicates the asymptotic values.

Figure 4. Cross-correlation versus 2at for y=1.
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and the moments by
[y1(t)]"'=j J [v1(ny, ny, O1"Py(n1) Py (1) dnydn,. (16)
oJo

Since we have taken P,(n;) and P,(n;) to be negative exponential distributions we
can integrate equation (16) by Gauss—Laguerre quadraturest to calculate the
moments. The results for the mean intensity, normalized variance and cross-
correlation are displayed in figures 1-4.

The numerical results are consistent with the analytic results for the steady state.
We found that when the intensities were scaled. to a, the temporal evolution of 3/a
and Q and the relation of Q to y/a became independent of a. »

When y«1 we see that the normalized variance rapidly approaches its limiting
value, Q « 1. This corresponds to the evolution of the single mode laser. In general,
however, mode competition limits this damping of the fluctuations. The output of
the symmetrical ring laser described by y=1 clearly does not evolve to a coherent
state. The examples for y > 1 show that Q, reaches values above { and indeed may rise
above the value of unity characteristic of thermal fluctuations. A report of excess
fluctuations in the weaker of two modes [7] might be explained by this calculation
and merits further investigation.

5. Discussion

The usefulness of the noise amplification model is demonstrated by the
agreement with previous distributed noise formulations and our extension to more
general physical conditions. The results have been obtained more simply and the
physical interpretation of the results is clearer. The success of our model indicates
that it is the variability in the early spontaneous noise (which is carried along to the
variability in the steady-state) which is important for the intensity fluctuations rather
than the later spontaneous noise (which one knows, is important for the phase
diffusion and hence the linewidth). Although our statistical results are achieved by
taking ensemble averages over the initial conditions the results agree quite well with
those of M-Tehrani and Mandel [1] where it is the L.angevin noise terms which cause

the fluctuations at any time .
We see that the special case of the symmetrical ring laser on line centre stands

uniquely as one in which mode competition sustains a high level of intensity
fluctuations. One may doubt whether this state is physically realizable given normal
fluctuations in the physical parameters. It seems an appropriate case for further
experimental study.

Because of the nature of our model we have been able to investigate unequal input
signals, a variation of parameters not analysed by M-Tehrani and Mandel [1]. Our
procedure can easily be adapted to predict results for other inputs such as a coherent

1We use the cartesian direct product formula [8]:

N
”F( ¥, %) exp (—y) exp (—z) dydz= ) F(x;, x pwaw,
ij

where the roots (x;) and weights (w;) are tabulated by Stroud and Secrest [9]. For our final
calculations, that choice of N was made which seemed to give 1 per cent accuracy as
determined by extrapolation from results for smaller values of N. This approximate accuracy
was confirmed by comparison with the analytic formula for the asymptotic values.
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signal from an external single-mode laser. Experimental investigation of injected
signals may be worthwhile in light of the predicted pulsations arising from unequal
thermal sources. »

One should also note that this model is generally applicable to the evolution of
two modes in one variable (in this case time). The results may thus apply to the
evolution with distance of two modes travelling in one direction in a laser amplifier.
Although the non-steady-state results of the present theory are limited by the
assumption that the coupling constant between the modes is equal to one, application
to the two polarizations in a unidirectional amplifier may be appropriate. In the
following paper [10], we present similar theoretical work relating to a bidirectional
laser amplifier.
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Mit Hilfe eines Ratengleichungsmodells flir Rauschverstirkung werden Intensitats-
fluktuationen in einem nicht verstimmten Zweimoden-Ringlaser hergeleitet. Sowohl
Niherungen als auch exakte Formen der Verstirkungssittigung werden behandelt. Stabile
Intensititsverteilungen werden analytisch hergeleitet und erlauben die Berechnung des
Mittelwerts und der normierten Varianz. Numerische Lisungen geben die zeitabhingige
Entwicklung dieser GroBen, beginnend beim Eingangsrauschen. Kiirzlich hergeleitete
Effekte der konkurrierenden Moden-Wechselwirkung, wie ein stabiler Wert von  fiir die
normierte Varianz (im Gegensatz zu Null beim konventionellen Laser) und negative
Korrelationen der Intensitatsfluktuationen der zwei Moden, ergeben sich hier zwangloser; ihr
statistischer Ursprung wird erklirt.

References

[11 M-TeHrANI, M., and MANDEL, L., 1978, Phys. Rev. A, 17, 677.
[2] MenEecozzl, L., and Lams, W. E., Jr., 1978, Phys. Rev. A, 17, 701.
[3] Horr, F. A., 1975, Optical Sciences Center Report..
[4] Van Kameen, N. G., 1976, Physics Lett. C, 24, 171.
[51 RiskeN, H., and NummMmeDpaL, K., 1968, J. appl. Phys., 39, 4662.
[6] CaspersoN, L. W., 1977, J. appl. Phys., 48, 256.
[71 M-TEeHRANI, M., and MaNDEL, L., 1978, Phys. Rev. A, 17, 694.
[8] StrROUD, A. H., 1971, Approximate Calculation of Multiple Integrals (Englewood Cliffs:
Prentice Hall).
[9] StroUD, A. H., and Secrest, D., 1966, Gaussian Quadrature Formulas (Englewood
Cliffs: Prentice Hall).
[10] ABraHAM, N. B., and Rockower, E. B., 1979, Optica Acta, 26, 1297.



